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Abstract—Scale up the large language models to store vast
amounts of knowledge within their parameters incur higher costs
and training times. Thus, in this study, we aim to examine
the effects of language models enhancing external knowledge
and compare the performance of extractive and abstractive
generation tasks in building the question-answering system. To
ensure consistency in our evaluations, we modified the MS
MARCO and MASH-QA datasets by filtering irrelevant support
documents and enhancing contextual relevance by mapping the
input question to the closest supported documents in our database
setup. Finally, we materiality assess the performance in the health
domain, our experience presents a promising result not only with
information retrieval but also with retrieval augmentation tasks
aimed at improving performance for future work.

Index Terms—Extractive generation, Abstractive generation,
Knowledge-Based Question-Answering

I. Introduction

Recent advancements in chatbots and several developments
in language modeling (LM) techniques have brought remark-
able performance in natural language processing tasks. How-
ever, generating long and coherent sentences suffers from
repetition, truncation, and hallucination [1,2] common in a
generation not only LM but also large language modeling
(LLM). To reduce this risk, [3] proposed grounded-based
information retrieval from external knowledge sources; [4,5]
enhancing knowledge via LLM to make the quality of response
with explicit query statements. Several methods successfully
compare with humans in terms of answers exploiting in
selecting knowledge [6,7]. However, their success lacks case
in real-life practicality as answers appear in multiple contexts
when querying external knowledge [8]. Therefore, the purpose
of this research focuses on the use of several linguistic
models ability to understand the context, extract external
knowledge, and rewrite responses more smoothly with fewer
hallucinations.

Long-form question answering (LFQA) [9] introduces a
new task that generates detailed and explained answers to
open-ended questions from the Reddit forums “Explain like
I am five years old”. However, Krishna et al. [1] evaluate
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that at least 81% of the validation questions overlap with the
training/validation data, which leads to bias in training and
inference. A survey of approaches challenge in medical health
introduces automatic question-answering, which has been suc-
cessfully applied in various domains such as search engines
and chatbots [10]. The MASH-QA [11] is a publicly avail-
able large-scale benchmark dataset different from the exist-
ing machine reading comprehension with short single-span
answers for question-answering. The MASH-QA answers are
extracted from multiple spans within a long context document
based on questions and knowledge articles from the consumer
health domain. Recently, transformer encoder models such as
BERT [12] and RoBERTa [13] trained from a large corpus
give the best performance when adapted to specific tasks using
transfer learning among them is Dense passage retrieval (DPR)
[3,14]. It has been shown to outperform traditional sparse
vector space models on several benchmarks by allowing the
capture of semantic similarity and handling lexical variations
easily integrated with existing retrieval-reader or retrieval-
generate to achieve state-of-the-art performance [3,15–17]. In
addition, encoder–decoder models BART [18] and T5 [17] can
be used for seq2seq tasks such as machine translation, text
summarization, and question-answering for promising results.

In this paper, we present a knowledge-based question-
answering system using DPR [14] to retrieve the external
knowledge (in this study called support documents) and the
Fusion-in-Decoder [17] takes the responsibility for generating
the answer. There are two observations in our proposal 1)
The large language models store vast amounts of knowledge
within their parameters leading to incurring higher costs and
training times. This is unnecessary with language models that
force models to depend on support knowledge to control
the quality and reduce the hallucination. 2) Using external
document retrieval not only augments intrinsic knowledge but
also grounds model outputs in a knowledge source, provid-
ing interpretability (the details in Session A). Our proposed
methods can be summarized as follows:

• Building a knowledge-based Question-Answering system
by using a sparse transformer-based comprising both
long-form and short-form answers.
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• The fusion-in-decoder architecture is better for extractive
and abstractive generation tasks by enhanced external
knowledge reducing the risk of hallucinates and making
the response smoothy.

• We focus on mental healthcare with the entries of transfer
learning on ELI5, MS MARCO, and MASH-QA datasets.
MASH-QA is a biomedicine broad domain that covers
clinical, biomedicine, consumer health, and examination.

The remainder of the article is structured as follows.
Section II discusses relevant works. The key idea for the
healthcare system and performing the details are explained in
Section III. The outcome and the work’s conclusion are then
reported in Sections V to VI, respectively.

II. Related Works

The key advantages of knowledge-based question-answering
tasks offer many benefits use as LM [3], augmented LM and
LLM [4,5]. Digging deeper, Open Domain Question Answer-
ing introduced architecture named “Retriever-Reader” analyze
the various systems that follow this architecture as well as the
specific techniques adopted in each of the components as a
method extractive generation on SQuAD, TriviaQA, Natural
Questions, and MS MARCO datasets [19–22]. Moreover, Fan
et al. [9] introduced “Retriever-Generation” for the abstractive
task by augmenting external knowledge and their variant
approach to the efficient transformers architecture [16,23] in
several datasets such as ELI5, MASH-QA, and SaaC [9,11,24].
Su et al. [25] designed an end-to-end framework for long-form
question answering that combines machine reading relevant
documents and extracts salient information before generating
a paragraph-length answer that is faithful to the facts.

The most fundamental distinction between the SeeKer
search module [26], sparse retrieval methods such as TF-
IDF [27], BM25 [28], or rewriting questions made clear
context QReCC [29] is focused on exact word matching or/and
frequency statistics which not reflect the correct meaning
of the input question when performing the task retrieval.
While the DPR module [3,14] learned embeddings from a
small number of questions and passages by a simple dual-
encoder framework. This allows DPR to capture semantic
similarity and handle lexical variations better. Some recent
techniques have also attempted to adapt knowledge through
editing and tuning language model variants giving a novel
perspective for solving knowledge-intensive tasks by replacing
document retrievers with large language model generators.
Krishna et al. [1] have demonstrated the effectiveness of the
Maximum Inner Product Search to retrieve Wikipedia articles
relevant to a question via a transformer model with the nearest
neighbor lookup. Borgeaud et al. [15] built large language
model retrieval over a database of trillions of tokens, but this
method has limitations in retrieval knowledge as the database
is fixed, which means would not be up to date with the latest
knowledge and current events.

Perhaps the closest to our work through experiments on
method and several baselines is the KILT benchmark ELI5
dataset a long-form question answering a strong abstractive
task [30]. We use the “Natural Language Generation” com-
petition track (NLGen v2.1) [22] of MS MARCO in which

each query has a human-generated answer and requires using
the most relevant given passage to create answers “in a way
in which it could be read from a smart speaker and make
sense without any additional context” as extractive. Finally,
the MASH-QA dataset [11] is a publicly available large-scale
dataset for question-answering, with answers extracted from
multiple spans within a long context document. It is based on
questions and knowledge articles from the consumer health
domain. Human evaluation results further validate that our
proposed framework can improve generation quality in terms
of relevance and factual correctness. The details setup dataset
can be found in Session A.

III. Methodology

In the following section, we decompose the question-
answering system into 2 modules: Retriever, which retrieves
support documents using DPR [14]; Generator, which pro-
cesses each question-document pair with fusion-in-decoder
[17] approach and then generates an answer. This structure
is similar to the retriever-reader framework that was first
introduced in DrQA [31] but instead of using a reader, we
train the language model with fusion-in-decode as a generator,
and these two modules can be developed independently. The
framework is illustrated in Fig. 1.

A. Retriever

To access support documents, we utilize DPR to manage the
Retriever module. The documents and questions are encoded
as dense vector representations that are calculated using two
BERT models—one for encoding questions called DPRq(.),
and another for encoding documents called DPRd(.). We
have N knowledge passages stored in the database, denoted
as {d1, d2, . . . , dN}, and represented by allow-dimensional
vector embedding, Ed ∈ RN×Dr where Dr is the hidden
dimension

Edi = DPRd(di) (1)

where i ∈ {1, 2, . . . , N}.
For an input question q, DPRq(.) converts the string-based

question to low-dimensional vector embedding as well, Eq:

Eq = DPRq(q) (2)

We use the FAISS [32] to speed up the retrieval of support
documents. The retrieval process is performed using approxi-
mate nearest neighbors. We rank and select the most relevant
knowledge passages by calculating the dot-product of the two
vector representations Eq and Edi which serve as the retrieval
score.

B. Generator

When compared to the retriever-reader approach, the
retriever-generator approach also consists of two stages. How-
ever, in the second stage, the retriever-generator generates free
text directly to answer the question. We train the generator to
produce an answer that is human like in its response, with
clear grammar and expression. The generator does not simply
extract start or end positions from a retrieved passage, nor does
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Fig. 1. FiD architecture. The figure at the top depicts the process of building a knowledge base whose data comes from a Wikipedia dump in our experiment.
The knowledge base consists of text and embedding representation of each knowledge passage. Then, use FAISS to create the index for speeding up querying
support documents. To query, the input question must be encoded to embedding vector, then calculated similarity score with support documents in clusters it
belongs to and returns a number of knowledge passages. The figure at the bottom presents how returned support documents are paired and calculated with
the question in the fusion-in-decoder approach. An input question is paired with each returned knowledge from the knowledge base. all of them are passed
to the backbone model’s encoder and corresponding semantic embedding vectors are generated. These embeddings are concatenated into one and passed to
the decoder then generates the response.

TABLE I
The Details of Question-Answering Extractive and Abstractive Datasets

Dataset Average Length Size

Question Answer Document Train Dev Test Total

ELI5 42.2 130.6 97.6 272,634 1,507 600 274,741
MS MARCO 6.0 13.1 93.5 453,033 2,540 1,669 457,242
MASH-QA 8.8 61.7 98.7 12,115 1,596 1,644 15,355

it generate an answer based on pieces of information already
available in knowledge passages like the original FiD.

The fusion-in-decoder approach is also based on a pre-
trained T5 [33]. With fusion-in-decoder, we can use more
knowledge passages without them being truncated due to the
token limit of any language model when concatenating all
knowledge passages and a question to a single input. For
each retrieved knowledge passage from retriever, a question
is paired, processed independently, and later combined, then
pushed to the encoder. Processing passages independently
in the decoder allows us to parallelize the computation.
A question and its relevant knowledge passages are separated
by special prefixes such as “question: “ and “context:”.

Given a set of retrieved knowledge passages
{k1, k2, . . . , kNα}, where Nα << N . Dg is the hidden

dimension of each token embedding and our T5 backbone has
L encoder and decoder layers. Each string input is calculated
by

I = ftokenize(q + ki) (3)

W
(0)
i = femb(I) (4)

, where I ∈ RS

W
(l)
i = ft5−enc(W

(0)
i ) (5)

where Wi ∈ RS×Dg , S is the max length of the input
sequence. The tokenized input vector is computed embedding
representation by femb(.) and encoded by multiple t5 encoder
layers, ft5−enc. Then, the output of the last layer of the
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encoder is put into the decoder, ft5−dec(.), to compute cross-
attention and generate the answer hidden state V :

V = ft5−dec([W
(l)
1 ;W

(l)
2 ; . . . ;W

(l)
Nα

]) (6)

IV. Experiments

A. Datasets

ELI5: We use the ELI5 dataset in the KILT benchmark
[30], the KILT version changed the knowledge source from
common Crawl to a fixed Wikipedia snapshot on August 01,
2019, that includes 5.9M articles. The total number of samples
in the train, validation, and test sets is 272,634, 1,507, and 600,
respectively, with the average of questions and answers being
42.2 and 130.6 words.

MS MARCO: provides a realistic setting for natural lan-
guage understanding research and covers diverse topics and
domains [22]. The Question Answering and Natural Language
Generation task requires using the most relevant given passage
to create answers “in a way in which it could be read
from a smart speaker and make sense without any additional
context.” The method of creating this dataset involves using
real Bing questions and human-generated answers. The queries
are sampled from anonymized user logs and the answers
are generated by human annotators based on relevant web
passages. In this case, we modify the entire dataset suitable to
our constraint with train, validation, and test sets are 453,033,
2,540, and 1,669 samples, respectively.

MASH-QA: The dataset is created by collecting consumer
healthcare queries from a commercial search engine and
matching them with relevant knowledge articles from a health
website [11]. It has 34,808 question-answer pairs and 5,574
documents with answers are 67.2 words in average length,
which shows this dataset serves well for long-form question-
answering tasks. MASH-QA was originally used for extractive
question-answering tasks. However, we approach this differ-
ently by generating answers for the questions with supporting
documents from the system’s external knowledge.

B. System and Parameter Settings

We used the ELI5 dataset following the instructions of the
KILT benchmark kit and processed MS MARCO and MASH-
QA as mentioned in Section A, which uses Wikipedia dump
as the source of the documents and then employed DPR
to retrieve passages for all datasets. For each question, we
retrieved 30 documents and set their maximum length to 250
words. Our main training starts with the pretrained T5 model
weight available in the Hugging Face Transformers library,
following former research and fine-tuning the models on each
dataset independently, using the Adam optimizer and learning
rate of 10−4 (effective batch size is 64 and 128, respectively
on abstractive and extractive generation tasks). We evaluate
the models every 500 steps using beam search with a beam
size of 4 and set a maximum answer length of 200 words.

V. Experiment Results

In this paper, we evaluate the performance of our text
generation system using ROUGE-L, BLEU-1, and F1-score.

ROUGE-L is a metric that assesses the similarity between
two sequences based on their longest common subsequence.
ROUGE-L scores range from 0 to 1 to evaluate our gener-
ated answers, with higher scores meaning better results. In
addition, we also employed BLEU-1 and F1-score to assess
the quality of our generated answers. The BLEU-1 score
measures the percentage of individual words that perfectly
match the machine output and a reference answer, with higher
scores indicating greater similarity with the reference sentence.
Finally, the F1-score, which is the harmonic mean of precision
and recall, was used to evaluate how well the generated answer
matched normalized uni-grams with the reference answer. By
using multiple metrics, we aim to provide a comprehensive
evaluation of our system’s performance and demonstrate its
effectiveness in generating high-quality text.

Our experiment involved the use of three different datasets,
and we observed varying levels of success across these
datasets. First of all, we compare the abstractive and extractive
generation performance of our system in Tables II and III.
Then, we compare the effect of the number of documents on
results in Section B and abstractive and extractive generation
with related and unrelated support documents in Section C.
The performance of abstractive generation Table II shows
that our approach ROUGE-L 29.37% and F1-score 27.78%
on the dev set improve the performance with many methods
while allowing customized database depends on our system
using dummy Wikidataset. Besides that, in the test set, our
approach keeps the original FAISS template format, and
experimental results are fewer than RBG [25] on F1-score

TABLE II
Comparison of our model with several methods on a dev and test set

of KILT ELI5 (the bold denotes the overall best performance)

Models dev test

ROUGE-L F1 ROUGE-L F1

T5 [30] 21.02 18.36 19.08 16.10
BART [30] 22.69 22.19 20.55 19.23
DPR+BART [30] 17.41 17.88 17.41 17.88
RAG [3] 16.11 17.24 15.50 17.10
RT+c-REAM [1] 24.40 25.60 23.20 22.90
RBG [25] 24.46 29.04 24.72 27.52

Ours 29.37 27.78 22.68 24.48

TABLE III
Performance comparison between extractive (MS MARCO,
MASH-QA) and abstractive (ELI5) test sets with 30 support

documents for each sample. We aim to provide a comprehensive
evaluation using multiple metrics reflect assess the similarity and
the quality of the response generation. Following the results, the
MS MARCO dataset improves performance with the MASH-QA not

only BLEU1 but also ROUGE-L and F1 scores more than 10%
performance. Moreover, to balance the extractive and abstractive,
we also evaluate the ELI5 dataset with ROUGE-L and F1 scores are

22.68% and 24.48%, respectively

ROUGE-L F1 BLEU1

MS MARCO 37.21 37.64 27.50
MASH-QA 20.69 24.60 26.63
ELI5 22.68 24.48 -
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27.52% and 24.48% and improve 1.6% performance with [1]
F1-score 22.9% and 24.48%. In addition, our strategic focus
on the expectation gap abstractive and extractive generation,
in Table III when transferring learning pretrained language
model on specific tasks with mixed training the performance.
Results from the MS MARCO dataset show values for 37.21%
ROUGE-L, 27.50% BLEU-1, and F1-score 37.64% compared
to other datasets this is likely due to several factors, including
the utilization of older model architecture, and limited comput-
ing power, changes in test data, and differences in supporting
documents. Similarly, the MASH-QA dataset did not yield
the expected favorable outcomes, and this study marked the
first attempt at utilizing this dataset for generative question-
answering purposes with the results 20.69%, 24.60%, and
26.63%, respectively.

We observed more positive results with the transfer learning
performance, which was characterized by several advantages
on the ELI5 dataset. The supporting documents used in this
dataset were of the same type as the original, resulting in
reduced variability and improved model performance. More-
over, we take advantage of information retrieval with several
steps of processing to enhance the analysis process’s efficiency
and ensure greater consistency in results in MASH-QA and
MS MARCO. The proposal is able to query any number
of documents as needed, facilitating data exploration and
approach refinement.

VI. Conclusion and Future Work

In this study, we concentrate on evaluating the ability of the
Language Model on extractive and abstractive generation tasks
by enhancing external knowledge reducing the risk of halluci-
nates and making the response answer smoother. Moreover, we
evaluate carefully the effect of relevant and irrelevant support
documents on the question. Table III summarizes the entire
result of our modified ELI5 and MASH-QA correspondence
between model accuracy and support documents for different
generation tasks. The MS MARCO with training twice the
number of samples improved performance by 10% when the
same hyperparameters entire training phase.

We believe that the experiment’s results will be flawed in
several cases. However, these knowledge gained contributions
will be a premise to help the research community to exploit
more in this field. The instruction tuning with meta-learning
has shown strong performance on natural language generation
tasks as applied in conversational AI, which trains and evalu-
ates in dialogue context to improve multitasking which is our
future work.
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